SIG-005: Novel Encapsulated Non-Viral Cell-Based Therapy for MPS-1

Marissa Donovan, Erika Pearson, Drew Tietz, Elizabeth Do, Lauren Jansen, Chris Sparages, Michele McAuliffe, Tiffany Vo, Lauren Sohn, Elina Makino

Sigilon Therapeutics, Cambridge, MA, United States
Author Disclosures

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Support/P.I.</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Employee</td>
<td>Sigilon Therapeutics</td>
</tr>
<tr>
<td>Consultant</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Stockholder</td>
<td>Sigilon Therapeutics</td>
</tr>
<tr>
<td>Speakers Bureau</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Honoraria</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Scientific Advisory Board</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
</tbody>
</table>
Shielded Living Therapeutics™ Platform

- This **non-viral, cell-based, modular platform** was designed to address:

 Cell-to-cell interaction and rejection

 Physical shield (2-compartment, modified alginate sphere)

 Pericapsular fibrotic overgrowth (PFO)

 Small-molecule conjugated alginate in outer layer

 Inner Compartment:
 - genetically modified human cells that express hIDUA
 - modified alginate designed to optimize cell function

 Outer Layer:
 - modified alginate chemically linked to small molecule to minimize PFO

HYPOTHESIS: sustained therapeutic effect could be achieved by administration of **IDUA-secreting allogeneic human cells** shielded within **spheres designed to avoid immune rejection** and pericapsular fibrotic overgrowth (PFO)
SIG-005: Development Path

1. Engineer cells to express hIDUA

2. Evaluate secreted hIDUA biochemical characteristics & in vitro functionality

3. Encapsulate engineered cells

4. Implant in MPS-1H mice
Short-Term Pharmacodynamic Study in MPS-1H Mice

Liver hIDUA activity

Tissue total heparan sulfate (HS)

SIG-005 reduces HS build-up in MPS-1H mouse tissues at all tested doses.
SIG-005 Produces Active hIDUA Both *In Vitro* and *In Vivo* For At Least 6 Months

SIG-005: Consistent levels of hIDUA produced from spheres for 6-months *in vitro*

![Graph showing consistent levels of hIDUA produced from spheres for 6-months *in vitro*.](image)

SIG-005: Low levels of HS in plasma 6-months post-administration in MPS-1H mice*

![Graph showing low levels of HS in plasma 6-months post-administration in MPS-1H mice.](image)

MPS-1H animals were treated with anti-mouse monoclonal antibody which modulates CD4 antigen (Qin et al., 1990; Waldmann, 1989) in order to prevent the xenogeneic response to human cells in SIG-005.

MPS-1: mucopolysaccharidosis type I; HS: heparan sulfate; U: nmol 4MU per hour

Error bars indicate SEM; Untreated, n=25; SIG-005, n=9; Laronidase, n=17; unpaired t-test vs untreated ***p<0.001; **p<0.01; *p<0.05; n.s. p>0.05.*
Enzyme Activity, Substrate Reduction 6 Months After SIG-005 Administration in MPS-1H Mice

High to normal levels of hIDUA activity 6 months post administration

Significant reduction in total HS 6 months post administration

Liver | Spleen | Heart | Lung

MPS-1 SIG-005

nmol 4MU/hr/mg protein (sham subtracted)

Error bars indicate SEM; Untreated, n=25; SIG-005, n=9; unpaired t-test vs untreated **** p<0.001; *** p<0.001; ** p<0.01; * p<0.05; n.s. p>0.05

MPS-1: mucopolysaccharidosis type I; HS: heparan sulfate

16th International Symposium on MPS and Related Diseases
Virtual Conference | Jul 23-25, 2021 | Barcelona
Reduction of Substrate in Tissues of MPS-1H Mice 6 Months After SIG-005

<table>
<thead>
<tr>
<th></th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated MPS-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG-005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alcian blue; Black arrow indicates substrate; * Bronchiole; * Glomerulus
SIG-005 Corrects Bone Phenotype in MPS-1H Mice 6 Months After Administration

Untreated MPS-1H

SIG-005 Treated

Total Bone Volume (Zygomatic Arch)

![Graph showing total bone volume](image)

Bone Length (Femur)

![Graph showing bone length](image)

Cortical Thickness (Femur Midshaft)

![Graph showing cortical thickness](image)

Trabecular Bone Volume (Distal Femur)

![Graph showing trabecular bone volume](image)

MPS-1: mucopolysaccharidosis type I; HET: heterozygous

Error bars indicate min to max; Untreated, n=23; SIG-005, n=9; HET: n=10

unpaired t-test vs untreated: **** p<0.001; *** p<0.001; ** p<0.01; * p<0.05; n.s. p>0.05

- MPS2021: 16th International Symposium on MPS and Related Diseases
- Virtual Conference | Jul 23-25, 2021 | Barcelona
Conclusions

- Encapsulated engineered cells (SIG-005) produced **active human α-L-Iduronidase**
- SIG-005 produced **active hIDUA** for up to 6 months **in vitro**
- SIG-005 demonstrated **dose-dependent IDUA activity** in tissues of MPS-1H mice
- SIG-005 **demonstrated dose-dependent substrate reduction** in MPS-1H mice
- MPS-1H mice treated with SIG-005 had IDUA activity in all tested tissues and **sustained reduction of accumulated substrate** 6 months after administration
- **Phenotypic corrections** were observed in **bones and other tissues** 6 months after SIG-005 administration