Introduction

- MPS-2 (Hunter Syndrome) is caused by deficiency of the lysosomal enzyme iduronate 2-sulfatase (IDS) leading to GAG accumulation in multiple tissues and organs.
- The accumulation results in a complex array of progressive, multi-organ, clinical manifestations with 2/3 of the patients presenting with CNS involvement.
- Approved treatments include enzyme replacement therapy, with gene therapies under investigation.

Hypothesis

- **Sustained therapeutic effect** can be achieved by administration of hIDS-secreting allogeneic human cells shielded within spheres designed to avoid immune rejection and pericapsular fibrotic overgrowth (PFO) in the patient.

Methods

- **Engineer cells to express hIDS**
- **In vitro evaluation of engineered cells**
- **In vitro evaluation of encapsulated cells**
- **In vivo evaluation of the final product**

Results

Comparison of hIDS Produced From Engineered Allogeneic Cells to Commercial Idursulfase

- K_m, hIDS from cell media vs idursulfase
- **4-Methylumbelliferyl-α-L-iduronide (μM)**
- Secreted hIDS
- Ion Exchange (Sephadex G100) Concentration

hIDS Levels and Heparan Sulfate (HS) Reduction in MPS-2 Mice Plasma

- Heparan sulfate
- Sustained therapeutic effect can be achieved
- good correlation with substrate reduction
- Ongoing work is addressing CNS access

Conclusions

- **Iduronate 2-sulfatase** produced by the engineered cells has similar biochemical characteristics as recombinant protein
- Encapsulated engineered cells (SIG-018) produced active human iduronate 2-sulfatase
- MPS-2 KO mice treated with SIG-018 showed continuous levels of active hIDS in plasma resulting in sustained reduction of accumulated substrate in multiple tissues
- Administration of various doses of SIG-018 demonstrated good correlation with substrate reduction
- Ongoing work is addressing CNS access
- Data supports transition of SIG-018 into the next phase of preclinical development

Results (cont’d)

Heparan Sulfate (HS) Reduction With Low Dose of SIG-018 Across Tissues in MPS-2 Mice

Liver

Kidney

Spleen

Heart

Lung

Plasma

Urine

4-week treatment with SIG-018 demonstrated reduction of HS across MPS-2 KO mouse tissues

Dose Response PD Study in MPS-2 Mice

Liver

Kidney

Spleen

Heart

Lung

Plasma

After one week SIG-018 reduces HS build-up across MPS-2 mouse tissues at the lowest dose level

Acknowledgements: The authors would like to acknowledge the team at Sigilon Therapeutics for guidance, laboratory work and helpful discussions. The work presented in this poster was fully funded by Sigilon Therapeutics, Inc.

Marissa Donovan, Drew Tietz, MaryLouise Ross, Marley Kapsimalis, Michaela Toland, Jerry Shih, Kathleen Barrett, Jie Li, Katie Jordan, Elina Makino -- Sigilon Therapeutics, Inc., Cambridge, MA, United States

Authors' e-mail: marissa.donovan@sigilon.com