Tunable Delivery of Parathyroid Hormone with the Shielded Living Therapeutics™ Platform Provides a New Modality for Treatment of Hypoparathyroidism

Divya Israni¹, Suyan Li², Takako Moriguchi², Huishan Li¹, Jared Sewell² ³, Jie Li², Janet Huang², Wilson W. Wong¹, Ahmad Khalil¹ ⁴, Hozefa Bandukwala², David Peritt²

¹ Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA; 2 Sigilon Therapeutics, Cambridge, MA; 3 currently at CatamaranBio, Inc., Cambridge, MA; 4 Wyss Institute for Biologically Inspired Engineer, Harvard University, Cambridge, MA
Introduction

- **Hypoparathyroidism** (low or minimal parathyroid hormone [PTH] production) is a rare endocrine disorder with an estimated 60,000 - 115,000 patients diagnosed with chronic hypoparathyroidism in the US each year.

- The most common cause of chronic hypoparathyroidism is surgical damage or removal of the parathyroid glands.

- PTH is a **critical hormone for regulating calcium homeostasis** and its normal plasma levels are tightly maintained in the range of 10-60 pg/mL.

- While replacement therapy with synthetic PTH hormone is a currently approved option for the treatment of hypoparathyroidism, a **key challenge is maintaining therapeutic levels within the physiological range**.

- SLTx is a novel allogeneic cell-based platform which enables tunable & long-term delivery of Parathyroid Hormone.
Shielded Living Therapeutics™ Platform

• This non-viral, cell-based, modular platform was designed to address two major challenges of allogeneic cell therapy:

 - Cell-to-cell interaction and rejection
 - Pericapsular fibrotic overgrowth (PFO)

 ➡️ Physical shield (2-compartment, modified alginate sphere)

 ➡️ Small-molecule conjugated alginate in outer layer

No PFO observed after 180 days

Empty spheres were administered to the non-human primates intraperitoneally via laparoscopic procedure.
Sustained and Tunable Delivery of PTH

We hypothesized that this platform can be used to deliver sustained and tunable delivery of human PTH.

Inner Compartment:
- genetically modified human cells with tunable expression of PTH
- modified alginate designed to optimize cell function

Outer Layer:
- modified alginate chemically linked to small molecule to minimize PFO

Design of a synthetic circuit to regulate PTH production using an oral drug

Off-State:
- Grazoprevir (GRZ)
- Addition of Small-molecule inducer (Inhibitor of NS3 Protease)

On-State:
- Protease Inhibition & Linker Stabilization
NS3-based Synthetic Circuit Enables Tunable Expression of PTH production from Engineered Cells

GRZ-responsive promoter

Tunable PTH expression obtained with GRZ concentrations amenable to oral dosing in humans
GRZ can titrate the PTH expression in encapsulated cells
SLTtx Platform Enables Inducible PTH Expression \textit{in vivo}

- Study Design: Nude mice were implanted with SLTtx-spheres containing cells engineered with Tunable expression of PTH
- NS3 inhibitor (inducer): Paritaprevir (PAR)
- Inducer-dosing: 20 or 200 mg/kg of Paritaprevir for 4 consecutive days via oral gavage
- PTH detection: After the 4-day induction bioactive hPTH levels in plasma were determined by PTH (1-84) ELISA.
Conclusions

- **PTH production** was efficiently induced from cells engineered with a circuit in a dose-regulatable manner.
- Reciprocally, withdrawal of the inducer led to complete attenuation of PTH production.
- Dose-responsive PTH production was maintained after encapsulation of engineered cells into the two-compartment alginate spheres.
- Finally, we demonstrated the functionality of the encapsulated cells in vivo with induction of human PTH at physiological levels in recipient animals by oral administration of the small-molecule inducer.

- Collectively, our data demonstrate a novel modality utilizing an innovative cell-based platform for the treatment of hypoparathyroidism which provides durable and tunable replacement of PTH, potentially overcoming limitations associated with current therapies.
Thank you for your attention!

Please visit our posters: 704, 864, 865