Introduction

- MPS II (Hunter Syndrome) is caused by deficiency of the lysosomal enzyme iduronate 2-sulfatase (ID3) leading to GAG accumulation in multiple tissues and organs.
- The accumulation results in a complex array of progressive, multi-organ, clinical manifestations with ~2/3 of the patients presenting with CNS involvement.
- Approved treatments include enzyme replacement therapy, with gene therapies under investigation.

Hypothesis

Sustained therapeutic effect can be achieved by administration of hIDS-secreting allogeneic human cells shielded within spheres designed to avoid immune rejection and pericapsular fibrotic overgrowth (PFO) in the patient.

Methods

1. Engineer cells to express hIDS
2. In vitro evaluation of engineered cells
3. In vitro evaluation of encapsulated cells
4. In vivo evaluation of the final product

Results

Comparison of hIDS Produced From Engineered Allogeneic Cells to Commercial Idursulfase

- Equivalent GAG lowering in MPS II fibroblasts by hIDS from cell media vs commercial idursulfase
- Equivalent uptake by MPS II fibroblasts of hIDS from cell media vs commercial idursulfase

Results (cont’d)

Heparan Sulfate (HS) Reduction With Low Dose of SIG-018 Across Tissues in MPS II Mice

- 4-week treatment with SIG-018 demonstrated reduction of HS across MPS II KO mouse tissues.

Dose Response PD Study in MPS II Mice

Conclusions

- Iduronate 2-sulfatase produced by the engineered cells has similar biochemical characteristics as recombinant protein.
- Encapsulated engineered cells (SIG-018) produced active human iduronate 2-sulfatase.
- MPS II KO mice treated with SIG-018 showed continuous levels of active hIDS in plasma resulting in sustained reduction of accumulated substrate in multiple tissues.
- Administration of various doses of SIG-018 demonstrated good correlation with substrate reduction.
- Ongoing work is addressing CNS access.
- Data supports transition of SIG-018 into the next phase of preclinical development.

Acknowledgements: The authors would like to acknowledge the team at Sigilon Therapeutics for guidance, laboratory work and helpful discussions. The work presented in this poster was fully funded by Sigilon Therapeutics, Inc. Presented at the 17th annual WORLD Symposium held February 9th – 12th, 2021, virtually. ©2021 Sigilon Therapeutics, Inc. All rights reserved.